
.

Department of CSE Page 1 of 25

COMPILER DESIGN

UNIT–I

Introduction Language Processing, Structure of a compiler, the Evaluation of Programming

language,The Science of building a Compiler application of Compiler Technology. Programming

LanguageBasics.

LexicalAnalysis-

:Theroleoflexicalanalysisbuffering,specificationoftokens.Recognitionsoftokensthelexical

analyzergeneratorlexical

UNIT-1

TRANSLATOR

A translator is a program that takes as input a program written in one language

andproducesasoutputaprograminanotherlanguage.Besideprogramtranslation,thetranslator
performs another very important role, the error-detection. Any violation of
HLLspecificationwouldbedetectedandreportedtotheprogrammers.Importantroleoftranslatora
re:

1TranslatingtheHLLprograminputintoanequivalentmachinelanguageprogram.2Provi

dingdiagnosticmessageswherevertheprogrammerviolatesspecificationof

theHLL.

A translator is a program that takes as input a program written in one language

andproducesasoutputaprograminanotherlanguage.Besideprogramtranslation,thetranslator
performs another very important role, the error-detection. Any violation of
HLLspecificationwouldbedetectedandreportedtotheprogrammers.Importantroleoftranslatora
re:

1 Translatingthehllprograminput intoanequivalentml program.

2 Providingdiagnosticmessageswherevertheprogrammerviolatesspecificationofthe

hll.

TYPEOFTRANSLATORS:-

a. Compiler

b. Interpreter

c. Preprocessor

Compiler

Compiler is a translator program that translates a program written in (HLL)

thesource program and translate it into an equivalent program in (MLL) the target program.
Asanimportant part of a compileriserrorshowing to the programmer.

Sourcepgm Compiler targetpgm

Department of CSE Page 2 of 25

Executing a program written n HLL programming language is basically of two parts.
Thesourceprogrammustfirstbecompiledandtranslatedintoaobjectprogram.Thentheresultingobj
ect programis loaded intoamemoryexecuted.

Interpreter:Aninterpreterisaprogramthatappearstoexecuteasourceprogramasifitweremachi
ne language.

LanguagessuchasBASIC,SNOBOL,LISPcanbetranslatedusinginterpreters.JAVAalsousesinter
preter.Theprocessof interpretationcanbecarried outin followingphases.

1. Lexicalanalysis

2. Synatxanalysis
3. Semanticanalysis

4. DirectExecution

Advantages:
Modification of user program can be easily made and implemented as
executionproceeds.

5. Typeofobjectthatdenotesavariousmaychange dynamically.
Debuggingaprogramand findingerrorsis simplifiedtaskfor
aprogramusedforinterpretation.

Theinterpreterforthelanguagemakesit machine independent.

Disadvantages:

The execution of the program is

slower.Memory consumption is more.

OVERVIEWOFLANGUAGEPROCESSINGSYSTEM

Department of CSE Page 3 of 25

Preprocessor

Apreprocessorproduceinputtocompilers.Theymayperformthe followingfunctions.

1. Macro processing: A preprocessor may allow a user to define macros that
areshorthands forlonger constructs.

2. Fileinclusion:A preprocessormay includeheader files intothe programtext.

3. Rational preprocessor: these preprocessors augment older languages with
moremodernflow-of-control and data structuring facilities.

4. Language Extensions: These preprocessor attempts to add capabilities to
thelanguageby certain amounts to build-in macro

Assembler: programmers found it difficult to write or read programs in machine
language.They begin to use a mnemonic (symbols) for each machine instruction, which
they
wouldsubsequentlytranslateintomachinelanguage.Suchamnemonicmachinelanguageisnow
calledanassemblylanguage.Programsknownasassemblerwerewrittentoautomate the
translation of assembly language in to machine language. The input to anassembler
program is called source program, the output is a machine language
translation(objectprogram).

LoaderandLink-editor:

Once the assembler procedures an object program, that program must be placed
intomemoryandexecuted.Theassemblercouldplacetheobjectprogramdirectlyinmemory
and transfer control to it, thereby causing the machine language program to beexecute.
This would waste core by leaving the assembler in memory while the
user‟sprogramwasbeingexecuted.Alsotheprogrammerwouldhavetoretranslatehisprogra
m with each execution, thus wasting translation time. To overcome this
problemsofwastedtranslationtimeandmemory.Systemprogrammersdevelopedanotherco
mponentcalled loader

“A loader is a program that places programs into memory and prepares them

forexecution.”It would be more efficient if subroutines could be translated into object
formtheloadercould”relocate”directlybehindtheuser‟sprogram.Thetaskofadjustingprograms
othey may beplaced in arbitrarycorelocations is calledrelocation.

STRUCTUREOFACOMPILER

Phases of a compiler: A compiler operates in phases. A phase is a logically
interrelatedoperation that takes source program in one representation and produces output in
anotherrepresentation.Thephases of acompiler areshown in below
Therearetwo phasesof compilation.

a. Analysis(MachineIndependent/LanguageDependent)

b. Synthesis(Machine Dependent/Language

independent)Compilationprocessispartitionedintono-of-sub processes

calledphases’.

Department of CSE Page 4 of 25

LexicalAnalysis:-

LA or Scanners reads the source program one character at a time, carving
thesourceprogram into a sequenceofautomic unitscalledtokens.

SyntaxAnalysis:-

The second stage of translation is called Syntax analysis or parsing. In
thisphase expressions, statements, declarations etc… are identified by using the results of
lexicalanalysis. Syntax analysis is aided by using techniques based on formal grammar of
theprogramminglanguage.

IntermediateCodeGenerations:-

Anintermediaterepresentationof thefinalmachinelanguage codeisproduced.
Thisphasebridgesthe analysisandsynthesisphases oftranslation.

CodeOptimization :-

This is optional phase described to improve the intermediate code so that
theoutputruns fasterand takes less space.

CodeGeneration:-

The last phase of translation is code generation. A number of optimizations
toreduce the length of machine language program are carried out during this phase.
Theoutputof thecodegeneratoris themachine languageprogram of the specifiedcomputer.

TableManagement(or) Book-keeping:-

Department of CSE Page 5 of 25

This is the portion to keep the names used by the program and
recordsessentialinformationabouteach. Thedatastructureusedtorecord thisinformationcalled
a
„SymbolTable‟.

ErrorHandlers:-

Itisinvokedwhenaflaw error inthesourceprogramisdetected.

The output of LA is a stream of tokens, which is passed to the next phase,
thesyntax analyzer orparser. The SA groups the tokenstogether into syntactic
structurecalledasexpression.Expressionmayfurtherbecombinedtoformstatements.Thesyntacti
cstructurecan beregardedasatreewhose leaves arethe token called asparsetrees.

The parser has two functions. It checks if the tokens from lexical

analyzer,occur inpattern that are permitted bythe specification for the source language.It
alsoimposesontokensatree-likestructurethatis usedbythe sub-sequentphasesofthecompiler.

Example, if a program contains the expression A+/B after lexical analysis

thisexpression might appear to the syntax analyzer as the token sequence id+/id. On seeing
the /,the syntaxanalyzer shoulddetectanerror situation,becausethe presence of these
twoadjacentbinary operatorsviolatestheformulations ruleof anexpression.

Syntax analysis is to make explicit the hierarchical structure of the

incomingtokenstream by identifyingwhich parts ofthetoken streamshouldbegrouped.

Example, (A/B*C has two possible

interpretations.)1,divideA by B and then
multiply by C or

2,multiply B byC and thenusethe resultto divideA.

eachof thesetwo interpretations can be represented in terms ofaparsetree.

IntermediateCodeGeneration:-

The intermediate code generation uses the structure produced by the
syntaxanalyzer to create a stream of simple instructions. Many styles of intermediate code
arepossible. Onecommonstyle usesinstructionwithone operatorandasmallnumber ofoperands.

The output of the syntax analyzer is some representation of a parse tree.
theintermediate code generation phase transforms this parse tree into an intermediate
languagerepresentationof thesourceprogram.

CodeOptimization

This is optional phase described to improve the intermediate code so that
theoutput runs faster and takes less space. Its output is another intermediate code program
thatdoesthe some job as the original, but in a way thatsaves time and / or spaces.

1,LocalOptimization:-

Therearelocaltransformationsthatcanbeappliedtoaprogramtoma
kean improvement.For example,

IfA>B gotoL2

GotoL3

L2 :

Thiscanbereplacedbyasinglestatement
If A< B goto L3

Department of CSE Page 6 of 25

Another important local optimization is the elimination of
commonsub-expressions

A:=B+C+DE

:=B + C + F

Mightbeevaluatedas

T1:=B + C

A :=T1 +

 D

E:=T1 + F
Takethis advantageofthecommon sub-expressionsB + C.

2,LoopOptimization:-

Another important source of optimization concerns about
increasingthespeedofloops.Atypicalloopimprovementistomoveacomp
utationthatproducesthesameresulteachtimearoundthelooptoa point, in
theprogramjust beforethe loopis entered.

CodeGenerator:-

Code Generator produces the object code by deciding on the memory
locationsfor data, selecting code to access each datum and selecting the registers in which
eachcomputation is to be done. Many computers have only a few high speed registers in
whichcomputations can be performed quickly. A good code generator would attempt to
utilizeregistersas efficiently aspossible.

TableManagement ORBook-keeping :-

A compiler needs tocollect information about allthe data objects thatappearin
the source program. The information about data objects is collected by the early phases
ofthecompiler-lexicalandsyntacticanalyzers.Thedatastructureusedtorecordthisinformationis
called as Symbol Table.

ErrorHanding :-

Oneofthemostimportantfunctionsofacompileristhedetectionandreporting of
errors in the source program. The error message should allow the programmer todetermine
exactly where the errors have occurred. Errors may occur in all or the phases of acompiler.

Whenever a phase of the compiler discovers an error, it must report the error
tothe error handler, which issues an appropriate diagnostic msg. Both of the table-
managementanderror-Handling routines interact withall phases of thecompiler.

Department of CSE Page 7 of 25

*

id3

Example:

Position:=initial+rate*60

Tokens id1 = id2 +id3 * id4

id1 +

id2

id4

id1 +

id2 *

id3 60

inttoreal

IntermediateCodeGenerator

temp1:= int to real
(60)temp2:= id3 *
temp1temp3:=id2
+temp2

id1:=temp3.

Temp1:=id3 *60.0

CodeOptimizer

LexicalAnalyzer

SyntsxAnalyzer

=

SemanticAnalyzer

=

Department of CSE Page 8 of 25

Id1:=id2 +temp1

MOVF id3,

r2MULF*60.0,

r2MOVF id2,

r2ADDF r2,

r1MOVF r1, id1

EvolutionofProgramminglanguages

The history of programming languages spans from documentation of early mechanical computers

tomodern tools for software development. Early programming languages were highly specialized,

relyingonmathematical notation

Themoveto HigherLevel Languages

The first step towards more people friendly programming languages was the development of

mnemonicassembly languages in the early 1950’s.The instructions in assembly languages were just

mnemonicrepresentationsof machineinstructions.

A major step towards higher level languages was made in the later half of the 1950’s with

thedevelopmentofFORTRANforscientificcomputation,Cobol forbusiness dataProcessingand

Lispforsymboliccomputation.

Inthe followingdecadesmanymorelanguageswerecreated

withinnovativefeaturestohelpmakeprogramming easier, morenatural, and morerobust.

Languages canalso beclassifiedinvarietyofways.

Classification by Generation: Ist generation are the machine languages, 2nd generation are

theassembly languages, 3rd generation are the higher level languages like Fortran,cobol,

Lisp,Cetc.4thgenerationarethelanguagesdesignedforspecificapplicationlikeNOMAD,SQL,POS

TThe term fifth generation language has been applied to logic and the constraint based

languagelikeprolog and OPS5.

Classification by the use: imperative languages in which your program specifies

Howcomputationistobedonethedeclarativeforlanguagesinwhichyourprogramspecifieswhatcom

putation isto bedone.

Examples:

Imperative

languages:C,C++,C#,Java.Declarativelangu

ages:ML,Haskell,Prolog

CodeGenerator

Department of CSE Page 9 of 25

Object oriented language is one that supports Object oriented programming,

aProgrammingstyleinwhichaprogramconsistsofacollectionof

objectsthatinteractwithoneanother.

Examples:Simula67,smalltalk,C++,Java,Ruby

Scriptinglanguages areinterpretedlanguageswithhighleveloperatorsdesigned for

“gluingtogether” computations These computations originally called

ScriptsExample:JavaScript, Perl, PHP,python, Ruby, TCL

TheScienceofbuildingaCompiler

A compilermust acceptall source programs thatconform tothe specificationofthelanguage;the set

of source programs is infinite and any program can be very large, consisting of possibly

millionsoflinesofcode.Anytransformation performedbythecompilerwhile translatingasourceprogram

mustpreserve the meaning of the program being compiled. Compiler writers thus have influence over

not

justthecompilerstheycreate,butalltheprogramsthattheircompilerscompile.Thisleveragemakeswritingcomp

ilersparticularlyrewarding;however,italsomakescompilerdevelopmentchallenging.

Modelling in compiler design and implementation: The study of compilers is mainly a study of

howwe design the right mathematical models and choose the right algorithms.Some of most

fundamentalmodels are finite-state machines and regular expressions.These models are useful for de-

scribing thelexical units of programs (keywords, identifiers, and such) and for describing the algorithms

used by thecompiler to recognize those units. Also among the most fundamental models are context-

free grammars,used to describe the syntactic structure of programming languages such as the nesting of

parentheses orcontrolconstructs.Similarly,treesareanimportantmodelfor

representingthestructureofprogramsandtheirtranslation into object code.

The science of code optimization: The term "optimization" in compiler design refers to the

attemptsthat a com-piler makes to produce code that is more efficient than the obvious code. In

modern times,the optimization of code that a compiler performs has become both more important and

more complex.It is more complex because processor architectures have become more complex,

yielding moreopportunitiesto improvethe waycodeexecutes. Itis moreimportant becausemassively par-

allel

computersrequiresubstantial optimization,ortheirperformancesuffers byordersofmagnitude.

Compileroptimizationsmustmeetthefollowingdesignobjectives:

1. Theoptimizationmustbecorrect,thatis,preservethemeaningof thecompiledprogram,

2. Theoptimization mustimprovetheperformanceofmany programs,

3. Thecompilationtimemust bekeptreasonable,and

4. Theengineeringeffortrequiredmustbe manageable.

Thus,instudying compilers,welearnnot onlyhowto buildacompiler,but

alsothegeneralmethodologyofsolving complex and open-endedproblems.

ApplicationsofCompilerTechnology

Compilerdesignimpactsseveralotherareasofcomputerscience.

Implementation of high-level programming language: A high-level programming language defines

aprogrammingabstraction:theprogrammer expressesanalgorithmusingthelanguage,andthecompiler

Department of CSE Page 10 of 25

musttranslatethatprogramtothetargetlanguage.higher-levelprogramming languagesareeasiertoprogram

in, but are less efficient, that is, the target programs run more slowly. Programmers using alow-

levellanguagehave morecontrolover acomputationandcan,in principle,producemoreefficientcode.

Languagefeaturesthathavestimulatedsignificantadvancesincompilertechnology.

Practically all common programming languages, including C, Fortran and Cobol, support user-

definedaggregate data types, such as arrays and structures, and high-level control flow, such as loops

andprocedure invocations. If we just take each high-level construct or data-access operation and

translate itdirectly to machine code, the result would be very inefficient. A body of compiler

optimizations, knownas data-flow optimizations, has been developed to analyze the flow of data through

the program andremovesredundancies

acrosstheseconstructs.Theyareeffectiveingeneratingcodethatresemblescodewrittenby askilled

programmer at a lower level.

ObjectorientationwasfirstintroducedinSimulain1967,andhasbeenincorporatedinlanguagessuchasSmalltal

k, C ++, C # ,and Java. Thekey ideas behind object orientationare

1. Dataabstraction and

2. Inheritanceofproperties,

Java has many features that make programming easier, many of which have been introduced

previouslyin other languages. Compiler optimizations have been developed to reduce the overhead, for

example,by eliminating unnecessary range checks and by allocating objects that are not accessible

beyond aprocedure on the stack instead of the heap. Effective algorithms also have been developed to

minimizetheoverhead of garbagecollection.

Indynamicoptimization,itisimportant tominimizethecompilationtimeasitispartoftheexecutionoverhead.

A common technique used is to only compile and optimize those parts of the program

thatwillbefrequently executed.

Optimizations forComputer Architecture:high-performance systemstake advantageofthe

sametwobasictechniques:parallelism

andmemoryhierarchies.Parallelismcanbefoundatseverallevels:attheinstruction level,wheremultiple

operations areexecuted simultaneously and at

the processor level, where different threads of the same application are run on different

processors.Memoryhierarchiesare aresponsetothe basiclimitationthatwecanbuildvery

faststorageorverylargestorage, but not storagethat is both fast and large.

DesignofNewComputerArchitectures:inmoderncomputer architecturedevelopment,

compilersaredeveloped in the processor-design stage, and compiled code, running on simulators, is used

to evaluatethe proposed architectural features. One of the best known examples of how compilers

influenced thedesign of computer architecture was the invention of the RISC (Reduced Instruction-Set

Computer)architecture.

Compiler optimizations often can reduce these instructions to a small number of simpler operations

byeliminating the redundancies across complex instructions. Thus, it is desirable to build

simpleinstruction sets; compilers can use them effectively and the hardware is much easier to optimize.

Mostgeneral-purpose processor architectures, including PowerPC, SPARC, MIPS, Alpha, and PA-

RISC, arebasedon the RISC concept.

Specialized ArchitecturesOverthelastthreedecades,manyarchitecturalconcepts havebeenproposed.

They include data flow machines, vector machines, VLIW (Very Long Instruction Word)machines,

SIMD (Single Instruction, Multiple Data) arrays of processors, systolic

arrays,multiprocessorswithsharedmemory,andmultiprocessors

withdistributedmemory.Thedevelopmentof each of these architectural concepts was accompanied by

the research and development ofcorrespondingcompilertechnology.

Department of CSE Page 11 of 25

Program Translations: The following are some of the important applications of program-

translationtechniques.

BinaryTranslation: Compilertechnology canbeusedto translatethe binarycodeforonemachine

tothatofanother,allowing amachineto runprogramsoriginallycompiled foranotherinstruction set.

Binarytranslationtechnologyhasbeenusedbyvariouscomputercompaniestoincreasethe availabilityof

softwarefortheir machines.

HardwareSynthesis: Not only is most software written in high-level languages; even hardware de-

signs are mostly described in high-level hardware description languages like Verilog and

VHDL.Hardwaredesignsaretypicallydescribedattheregistertrans-ferlevel

(RTL),wherevariablesrepresentregistersandexpressionsrepresent combinationallogic.

DatabaseQueryInterpreters: Besides specifying software and hardware, languages are useful

inmanyotherapplications.Forexample,querylanguages,especiallySQL(StructuredQueryLanguage),are

used to search databases. Database queries consist of predicates containing relational and

booleanoperators. They can be interpreted or com-piled into commands to search a database for

recordssatisfyingthat predicate.

ProgrammingLanguageBasics:

1 The Static/Dynamic

Distinction2Environments and

States

3 Static Scope and Block

Structure4Explicit AccessControl

5 DynamicScope

6 ParameterPassingMechanisms

The Static/Dynamic Distinction: Among the most important issues that we face when designing

acompiler for a language is what decisions can the compiler make about a program. If a language uses

apolicy that allows the compiler to decide an issue, then we say that the language uses a static policy

orthat the issue can be decided at compile time. On the other hand, a policy that only allows a decision

tobemadewhenwe execute theprogram is said to be a dynamicpolicy.Oneissue is thescopeofdeclarations.

The scope of a declaration of x is the region of the program in which uses ofx refer to thisdeclaration. A

language uses static scope or lexical scope if it is possible to determine the scope of adeclaration by

looking only at the program. Otherwise, the language uses dynamic scope. With

dynamicscope,astheprogram runs,thesame useofxcould referto any ofseveraldifferentdeclarations ofx.

EnvironmentsandStates:

The environment

isamappingfromnamestolocationsinthestore.Sincevariablesrefertolocations,wecould

alternativelydefineanenvironmentasamappingfromnamestovariables.

The state is a mapping from locations in store to their values. That is, the state maps 1-values

totheir corresponding r-values, in the terminology of C. Environments change according to the scope

rulesof alanguage.

Department of CSE Page 12 of 25

StaticScopeand BlockStructure

Most languages, including C and its family, use static scope. we consider static-scope rules for

alanguagewithblocks,whereablockisagroupingof declarationsandstatements. Cusesbraces

{and}todelimitablock; the alternativeuseof begin and endforthe samepurposedates backto Algol.

ACprogramconsistsofasequenceoftop-leveldeclarationsofvariablesandfunctions.Functions may

have variable declarations within them, where variables include local

variablesandparameters.Thescopeof eachsuch declarationis restrictedto thefunction inwhich itappears.

The scope of a top-level declaration of a name x consists of the entire program that follows, with

theexceptionofthose statements that liewithin a function that alsohas adeclaration ofx.

A block is a sequence of declarations followed by a sequence of statements, all surrounded

bybraces.adeclaration D "belongs" to a block B if B is the mostclosely nested block containing D; thatis,

D is located within B, but not within any block that is nested within B. The static-scope rule forvariable

declarations ina block-structured lan-guages is asfollows. If declaration D of name x belongsto block B,

then the scope of D is all of B, except for any blocks B' nested to any depth within J5, inwhich x is

redeclared. Here, x is redeclared in B' if some other declaration D' of the same name xbelongs toB'.

An equivalent way to express this rule is to focus on a use of a name x. Let Bi, i?2, • • • , Bk

beall the blocks that surround this use of x, withBk the smallest, nestedwithin Bk-i, which is

nestedwithinBk-2,andsoon.SearchforthelargestisuchthatthereisadeclarationofxbelongingtoB^.This use of

x refers to the declaration in B{. Alternatively, this use of x is within the scope of thedeclarationin Bi.

ExplicitAccessControl

Throughtheuseofkeywordslikepublic,private, and protected,object-orientedlanguagessuchasC

+ + or Java provide explicit control over access to member names in a superclass. These

keywordssupport encapsulation by restricting access. Thus, private names are purposely given a scope

thatincludes only the method declarations and definitions associated with that class and any "friend"

classes(theC++term).Protected namesareaccessible tosubclasses. Publicnamesare

accessiblefromoutsidetheclass.

Dynamic Scope

Anyscopingpolicy isdynamicif itis basedonfactor(s) thatcanbeknown only

whentheprogramexecutes.The termdynamic

scope,however,usuallyreferstothefollowingpolicy:auseofanamexrefersto thedeclarationof

xinthemostrecentlycalled procedurewithsuchadeclaration.

Dynamicscoping ofthis typeappears onlyin specialsituations. Weshall considertwoex-amples of

Department of CSE Page 13 of 25

dynamic policies: macro expansion in the C preprocessor and method resolution in object-

orientedprogramming.

DeclarationsandDefinitions

Declarations tell us about the types of things, while definitions tell us about their values. Thus, i n t i is

adeclarationofi, whilei =1 is a definition ofi.

The difference is more significant when we deal with methods or other procedures. In C + + , a

methodis declared in a class definition, by giving the types of the arguments and result of the method

(oftencalled the signature for the method. The method is then defined, i.e., the code for executing the

methodis given, in another place. Similarly, it is common to define a C function in one file and declare

it inotherfiles wherethe function is used.

ParameterPassingMechanisms

In this section, we shall consider how the actual parameters (the parameters used in the call of

aprocedure) are associated with the formal parameters (those used in the procedure definition).

Whichmechanism is used determines how the calling-sequence code treats parameters. The great

majority oflanguagesuseeither "call-by-value," or"call-by-reference," orboth.

Call-by -Value

In call-by-value, the actual parameter is evaluated (if it is an expression) or copied (if it is a

variable).The value is placed in the location belonging to the corresponding formal parameter of the

calledprocedure. This methodis used in C and Java,and is a common option in C + + ,as well as

inmostother languages. Call-by-value has the effect that all computation involving the formal

parameters doneby the called procedure is local to that procedure, and the actual parameters themselves

cannot bechanged.

Note, however, that in C we can pass a pointer to a variable to allow that variable to be changed by

thecallee. Likewise, array names passed as param eters in C, C + + , or Java give the called procedure

whatis in effect a pointer or reference to the array itself. Thus, if a is the name of an array of the

callingprocedure,anditispassedbyvaluetocorrespondingformalparameterx,thenanassignmentsuchasx[i]=2

reallychangesthearrayelementa[2].Thereasonisthat,althoughxgetsacopyofthevalueof a, that value is

really a pointer to the beginning of the area of the store where the array named a islocated.

Similarly, in Java, many variables are really references, or pointers, to the things they stand for.

Thisobservation applies to arrays, strings, and objects of all classes. Even though Java uses call-by-

valueexclusively, whenever we pass the name of an object to a called procedure, the value received by

thatprocedure is in effect a pointer to the object. Thus, the called procedure is able to affect the value of

theobjectitself.

Call-by -Reference

In call-by-reference, the address of the actual parameter is passed to the callee as the value of

thecorresponding formal parameter. Uses of the formal parameter in the code of the callee are

implementedby following this pointer to the location indicated by the caller. Changes to the formal

parameter thusappear as changes to theactual parameter.

Department of CSE Page 14 of 25

Iftheactualparameterisanexpression,however,thentheexpressionisevaluatedbeforethecall,andits value

stored in a location of its own. Changes to the formal parameter change this location, but canhaveno

effect on thedataof thecaller.

Call-by-reference is used for "ref" parameters in C + + and is an option in many other languages. It

isalmost essential when the formal parameter is a large object, array, or structure. The reason is that

strictcall-by-value requires that the caller copy the entire actual parameter into the space belonging to

thecorresponding formal parameter. This copying gets expensive when the parameter is large. As we

notedwhen discussing call-by-value, languages such as Java solve the problem of passing arrays,

strings, orother objects by copying only a reference to those objects. The effect is that Java behaves as if

it usedcall-by-referencefor anything other than abasictypesuch as an integer or real.

Call-by -Name

A third mechanism — call-by-name — was used in the early programming language Algol 60.

Itrequires that the callee execute as if the actual parameter were substituted literally for the

formalparameter in the code of the callee, as if the formal parameter were a macro standing for the

actualparameter (withrenaming of local names in the called procedure, to keep them distinct).

Whentheactual parameter is an expression rather than a variable, some unintuitive behaviors occur,

which is onereasonthis mechanism isnot favored today.

Department of CSE Page 15 of 25

LEXICALANALYSIS

OVERVIEWOFLEXICALANALYSIS

o Toidentify thetokens we need somemethod ofdescribingthepossibletokens
thatcanappear in the input stream. For this purpose we introduce regular expression,
anotation that can be used to describe essentially all the tokens of
programminglanguage.

o Secondly,havingdecidedwhatthetokensare,weneedsomemechanism torecognizethese
in the input stream. This is done by the token recognizers, which are
designedusingtransition diagrams and finite automata.

ROLEOF LEXICALANALYZER

the LA is thefirst phase of a compiler.It main task is to read the
inputcharacterandproduceas outputa sequenceof tokensthat theparser usesfor syntax analysis.

Upon receiving a get next token command form the parser, the lexical

analyzerreads the input character until it can identify the next token. The LA return to the
parserrepresentation for the token it has found. The representation will be an integer code, if
thetokenis asimple construct such as parenthesis, comma orcolon.

LA may also perform certain secondary tasks as the user interface. One such task

isstriping out from the source program the commands and white spaces in the form of
blank,tab and new line characters. Another is correlating error message from the compiler
with thesourceprogram.

Department of CSE Page 16 of 25

LEXICALANALYSISVSPARSING:

Lexicalanalysis Parsing

A Scanner simply turns an input String (say

afile) into a list oftokens. These

tokensrepresent things like identifiers,
parentheses,operatorsetc.

The lexical analyzer (the "lexer")

parsesindividual symbols from the source

code fileinto tokens. From there, the

"parser" properturnsthosewhole tokensinto

sentencesof

yourgrammar

A parser converts this list of tokens into

aTree-like object to represent how the

tokensfit together to forma cohesive
whole(sometimesreferred to asasentence).

A parser does not give the nodes

anymeaning beyond structural cohesion.

Thenext thing to do is extract meaning from

thisstructure(sometimescalledcontextual

analysis).

INPUTBUFFERING

The LA scans the characters of the source pgm one at a time to discover
tokens.Because of large amount of time can be consumed scanning characters, specialized
bufferingtechniques have been developed to reduce the amount of overhead required to
process an inputcharacter.

Bufferingtechniques:

1. Bufferpairs

2. Sentinels

The lexical analyzer scans the characters of the source program one a t a time to
discovertokens. Often, however, many characters beyond the next token many have to be
examinedbefore the next token itself can be determined. For this and other reasons, it is
desirable forthelexical analyzer to read its input from an input buffer. Figure shows a buffer
divided intotwo haves of, say 100 characters each. One pointer marks the beginning of the
token beingdiscovered. A look ahead pointer scans ahead of the beginning point, until the
token isdiscovered .we view the position of each pointer as being between the character last
read andthecharacter next to be read. In practice each buffering scheme adopts one
convention eitherapointeris at thesymbol last reador thesymbol itis readyto read.

Token beginnings look ahead pointerThe distance which the lookahead pointer
mayhave to travel past the actual token may belarge. For example, in a PL/I program we may
see:DECALRE(ARG1,ARG2…ARGn)WithoutknowingwhetherDECLAREisakeywordor

Department of CSE Page 17 of 25

an array name until we see the character that follows the right parenthesis. In either case,
thetoken itself ends at the second E. If the look ahead pointer travels beyond the buffer half
inwhich it began, the other half must be loaded with the next characters from the source
file.Since the buffer shown in above figure is of limited size there is an implied constraint on

howmuch look ahead can be used before the next token is discovered. In the above example,
ifthelook ahead traveled to the left half and all the way through the left half to the middle, we
couldnot reload the right half, because we would lose characters that had not yet been

groupedintotokens. While we can make the buffer larger if we chose or use another buffering
scheme,wecannotignorethefact that overhead is limited.

TOKEN,LEXEME,PATTERN:

Token:Tokenisasequenceofcharactersthatcanbetreatedasasinglelogicalentity.Typicalt
okens are,

1)Identifiers2)keywords3)operators4)specialsymbols5)constants

Pattern: A set of strings in the input for which the same token is produced as output. This
setofstrings is described byarulecalled apattern associated withthetoken.

Lexeme:Alexemeisasequenceofcharactersinthesourceprogramthatismatchedbythepatter
n foratoken.

Example:

Descriptionoftoken

Token lexeme pattern

const const const

if if If

relation <,<=,=,<>,>=,> <or <=or =or <>or >=or letter
followedbyletters&digit

i pi anynumericconstant

nun 3.14 anycharacterb/w“and“except"

literal "core" pattern

Department of CSE Page 18 of 25

Apatternisaruledescribingthesetoflexemesthatcanrepresentaparticulartokeninsourcepr
ogram.

LEXICALERRORS:

Lexical errors are the errors thrown by your lexer when unable to continue.
Whichmeans that there's no way to recognise a lexeme as a valid token for you lexer.
Syntaxerrors, on the other side, will be thrown by your scanner when a given set of
alreadyrecognised valid tokens don't match any of the right sides of your grammar
rules.simplepanic-modeerrorhandlingsystemrequiresthatwereturntoahigh-
levelparsingfunction whenaparsingorlexicalerror isdetected.

Error-recoveryactionsare:

i. Deleteone characterfromtheremaininginput.

ii. Insertamissingcharacterin totheremaininginput.

iii. Replacea characterbyanothercharacter.

iv. Transposetwoadjacentcharacters.

DIFFERENCEBETWEENCOMPILERANDINTERPRETER

Acompilerconvertsthehighlevelinstructionintomachinelanguagewhileaninterpreterco
nverts thehigh level instructionintoan intermediateform.

Beforeexecution,entireprogramisexecutedbythecompilerwhereasaftertranslatingthefirs
t line, aninterpreter then executesit and so on.

Listoferrorsiscreatedbythecompilerafterthecompilationprocesswhileaninterpretersto
ps translating after the first error.

Anindependentexecutablefileiscreatedbythecompilerwhereasinterpreteris
requiredbyan interpretedprogram each time.

The compiler produce objectcode whereasinterpreter doesnotproduce objectcode. In
the process of compilation the program is analyzed only once and then thecode is
generated whereas source program is interpreted every time it is to beexecuted and
every time the source program is analyzed. hence interpreter is
lessefficientthancompiler.

Examples of interpreter: A UPS Debugger is basically a graphical source
leveldebugger but it contains built in C interpreter which can handle multiple
sourcefiles.
Example of compiler: Borland c compiler or Turbo C compiler compiles
theprogramswritten in C orC++.

Department of CSE Page 19 of 25

REGULAREXPRESSIONS

Regularexpressionis aformula thatdescribesapossibleset ofstring.

Componentofregularexpression..

X thecharacterx

. anycharacter,usuallyacceptanewline[xy

z] anyof thecharactersx,y, z, …..

R? a R or nothing (=optionally as

R)R* zeroormoreoccurrences…..

R+

 oneormoreoccurrences……R

1R2 an R1 followed by an

R2R2R1 eitheran R1 oran R2.

A token is either a single string or one of a collection of strings of a certain type. If we
viewthe set of strings in each token class as an language, we can use the regular-
expressionnotation todescribetokens.

Consideranidentifier,whichisdefinedtobealetterfollowedbyzeroormorelettersordigits.

In regularexpression notation wewould write.

Identifier=letter(letter |digit)*

Herearetherulesthat definetheregular expressionover alphabet.

o isaregularexpressiondenoting {€},thatis, thelanguage containingonly the

emptystring.

o Foreach„a‟in ∑,isaregularexpressiondenoting {a},
thelanguagewithonlyonestringconsisting of thesinglesymbol „a‟.

o IfR andS areregular expressions,then

(R) |(S)means LrULs
R.SmeansLr.Ls
R*denotesLr*

REGULARDEFINITIONS

Fornotationalconvenience,wemaywishtogive namestoregularexpressionsandto

define regular expressions using thesenamesas if they weresymbols.

Identifiers are the set or string of letters and digits beginning with a letter.
Thefollowingregulardefinitionprovides aprecisespecification for thisclass ofstring.
Example-1,

Ab*|cd?Is equivalentto (a(b*)) |(c(d?))

Pascalidentifier

Letter-
Digits -

A|B|……|Z|a |b|……|z|0
|1|2|….|9

letter(letter/digit)* I

Department of CSE Page 20 of 25

Recognitionoftokens:

We learn how to express pattern using regular expressions. Now, we must study how to

takethe patterns for all the needed tokens and build a piece of code that examins the input

stringandfinds aprefix that is alexeme matching oneof thepatterns.

Stmt->if exprthen stmt
|Ifexpr thenelse stmt
|є

Expr-->termrelop term
|term

Term-->id

Forrelop,weusethecomparisonoperations oflanguages likePascal orSQLwhere=is

“equals” and <> is “not equals” because it presents an interesting structure of lexemes.
Theterminal of grammar, which are if, then , else, relop ,id and numbers are the names of
tokensas far as the lexical analyzer is concerned, the patterns for the tokens are described
usingregulardefinitions.

digit --

>[0,9]digits

 -->digit+

number -->digit(.digit)?(e.[+-

]?digits)?letter -->[A-Z,a-z]

id -->letter(letter/digit)*

if -->if

then -->then

else -->else

relop --></>/<=/>=/==/<>

Inaddition,weassignthelexicalanalyzerthejobstrippingoutwhitespace,byrecognizing
the “token”wedefined by:

ws-->(blank/tab/newline)
+

Here,blank,tabandnewlineareabstractsymbolsthatweusetoexpresstheASCIIcharacters of the
same names. Token ws is different from the other tokens in that ,when werecognize it, we do
not return it to parser ,but rather restart the lexical analysis from thecharacter that follows the
white space . It is the following token that gets returned to theparser.

Lexeme TokenName AttributeValue

Anyws _ _

if if _

then then _

else else _

AnyId id pointertotableentry

Anynumber number
pointertotableentry

< relop LT

Department of CSE Page 21 of 25

<= relop LE

= relop ET

<> relop NE

TRANSITIONDIAGRAM:

Transition Diagram has a collection of nodes or circles, called states. Each
staterepresents a condition that could occur during the process of scanning the input looking
for alexemethat matches oneof several patterns .

Edgesaredirectedfromonestateofthetransitiondiagramtoanother.eachedgeislabeledby

asymbol or set of symbols.

Ifwe arein one states, andthe next inputsymbolisa, welookforan edgeout of stateslabeledby

a.if wefind suchan edge,weadvancetheforward pointer and enter

thestateof thetransition diagram to which that edgeleads.

Someimportantconventionsabouttransition diagramsare

1. Certain states are said to be accepting or final .These states indicates that a lexeme
hasbeen found, although the actual lexeme may not consist of all positions b/w the lexeme
Beginandforward pointers wealways indicate an accepting stateby adouble circle.

2. In addition,ifitisnecessarytoreturnthe forward
pointeroneposition,thenweshalladditionallyplacea* near that accepting state.

3. One state is designed the state ,or initial state ., it is indicated by an edge labeled
“start”entering from nowhere .the transition diagram always begins in the state before any
inputsymbolshavebeen used.

As an intermediate step in the construction of a LA, we first produce a

stylizedflowchart, called a transition diagram. Position in a transition diagram, are drawn as
circlesandare calledas states.

Department of CSE Page 22 of 25

The above TD for an identifier, defined to be a letter followed by any no of
lettersor digits.A sequence of transition diagram can be converted into program to look for
thetokensspecified by the diagrams. Eachstate gets asegment ofcode.

If
Then

Else

=
=

=

if
then

else
Relop = <|<=|= |>|>=

Id = letter(letter|digit) *|

Num
AUTOMATA

= digit|

An automation is defined as a system where information is transmitted and

usedforperforming somefunctions without direct participationofman.

1, an automation in which the output depends only on the input is called
anautomation withoutmemory.

2, an automation in which the output depends on the input and state also is
calledas automation withmemory.

3,an automation in which the output dependsonly on the stateof themachine is
calleda Mooremachine.

3, an automation in which the output depends on the state and input at any
instantof timeiscalled amealymachine.

DESCRIPTIONOFAUTOMATA

1,anautomatahasamechanismtoreadinputfrom inputtape,

2,anylanguageisrecognizedby someautomation,Hencetheseautomationare
basicallylanguage„acceptors‟or„languagerecognizers‟.

TypesofFiniteAutomata

DeterministicAutomata

Non-DeterministicAutomata.

DETERMINISTICAUTOMATA

Adeterministicfiniteautomatahasatmostonetransitionfromeachstateonanyinput.A
DFA is aspecialcaseofaNFA inwhich:-

1,it hasnotransitions on input€ ,

Department of CSE Page 23 of 25

2,eachinput symbolhas at mostonetransition fromanystate.

DFAformallydefinedby5tuplenotationM=(Q,∑,δ,qo,F), whereQis

afinite„set of states‟,which is nonempty.

∑is„input alphabets‟, indicatesinputset.

qo is an „initial state‟ and qo is in Q ie, qo, ∑,
QFis a set of„Final states‟,

δisa„transmissionfunction‟ormappingfunction,usingthisfunction
thenextstatecanbedetermined.

Theregularexpressionisconvertedinto minimizedDFAbythe followingprocedure:

Regularexpression→NFA→DFA→MinimizedDFA

TheFiniteAutomata iscalled DFAif thereis

onlyonepathforaspecificinputfromcurrentstate to next state.

a

FromstateS0forinput„a‟thereisonlyone pathgoingtoS2. similarlyfromS0
thereis only onepath forinputgoing to S1.

NONDETERMINISTICAUTOMATA

ANFAisamathematicalmodelthatconsistsof

Asetof statesS.

Asetofinputsymbols ∑.

Atransition formovefromonestate toanother.

Astatesothatisdistinguishedasthestart(orinitial)state.

AsetofstatesF distinguishedasaccepting(orfinal)state.

Anumberoftransition to asinglesymbol.

So
a

S2

b

S1

 Department of CSE Page 24 of 25

A NFA can be diagrammatically represented by a labeled directed graph, called
atransition graph, In which the nodes are the states and the labeled edges
representthetransition function.

This graph looks like a transition diagram, but the same character can label two
ormore transitions out of one state and edges can be labeled by the special symbol
€aswell as by input symbols.

ThetransitiongraphforanNFAthatrecognizesthelanguage(a|b)*abbisshown

DEFINITIONOF CFG

Itinvolvesfourquantities.

CFGcontainterminals, N-T,startsymbolandproduction.

Terminalarebasicsymbolsform whichstringareformed.

N-terminalsaresynthetic variablesthat denotesetsofstrings

InaGrammar,oneN-T aredistinguishedasthe startsymbol,andthesetofstring
it denotesis the languagedefinedby thegrammar.

Theproductionofthegrammarspecify themanor in whichtheterminalandN-
T can becombined to form strings.

Each production consists of a N-T, followed by an arrow, followed by a
stringofoneterminal and terminals.

DEFINITIONOFSYMBOLTABLE

Anextensiblearrayofrecords.

Theidentifierandtheassociatedrecordscontainscollectedinformation
abouttheidentifier.

FUNCTIONidentify(Identifiername)

RETURNINGapointertoidentifierinformationcontains
Theactual string

AmacrodefinitionA
keyworddefinition

Alistoftype,variable&functiondefinition
Alistofstructureandunionnamedefinition

Alistof structureand unionfield selecteddefinitions.

Department of CSE Page 25 of 25 25

CreatingalexicalanalyzerwithLex

Lexspecifications:

ALex program (the.l file) consists of threeparts:

declarations

%%

translationrules

%%

auxiliaryprocedures

1. The declarations section includes declarations of variables,manifest constants(A

manifestconstant is an identifier that is declared to represent a constant e.g.# define PIE
3.14),andregular definitions.

2. Thetranslation rules of aLexprogramarestatements of theform :

p1 {action1}
p2 {action2}

p3 {action3}

… …

… …

where each p is a regular expression and each action is a program fragment
describingwhat action the lexical analyzer should take when a pattern p matches a
lexeme. In Lextheactions arewritten inC.

3. Thethirdsectionholdswhateverauxiliaryproceduresareneededbytheactions.Alternatively

these procedures can be compiled separately and loaded with thelexicalanalyzer.

Note:You canreferto a samplelexprogram given in pageno. 109 ofchapter3 ofthe book:

Compilers:Principles,Techniques, andToolsby Aho,Sethi &Ullmanformoreclarity.

	UNIT–I
	TRANSLATOR
	a. Compiler
	c. PreprocessorCompiler
	Advantages:
	Disadvantages:
	Preprocessor
	LoaderandLink-editor:

	STRUCTUREOFACOMPILER
	LexicalAnalysis:-
	SyntaxAnalysis:-
	IntermediateCodeGenerations:-
	CodeOptimization :-
	CodeGeneration:-
	TableManagement(or) Book-keeping:-
	ErrorHandlers:-
	IntermediateCodeGeneration:-
	CodeOptimization
	L2 :
	A:=B+C+DE :=B + C + F
	T1:=B + C
	CodeGenerator:-
	TableManagement ORBook-keeping :-
	ErrorHanding :-

	EvolutionofProgramminglanguages
	Themoveto HigherLevel Languages

	TheScienceofbuildingaCompiler
	ApplicationsofCompilerTechnology
	ProgrammingLanguageBasics:
	EnvironmentsandStates:
	StaticScopeand BlockStructure
	ExplicitAccessControl
	Dynamic Scope
	DeclarationsandDefinitions
	ParameterPassingMechanisms
	Call-by -Value
	Call-by -Reference
	Call-by -Name
	OVERVIEWOFLEXICALANALYSIS
	ROLEOF LEXICALANALYZER
	LEXICALANALYSISVSPARSING:
	TOKEN,LEXEME,PATTERN:
	Example:
	LEXICALERRORS:
	DIFFERENCEBETWEENCOMPILERANDINTERPRETER
	REGULAREXPRESSIONS
	X thecharacterx
	R? a R or nothing (=optionally as R)R* zeroormoreoccurrences…..
	REGULARDEFINITIONS
	Example-1,
	Recognitionoftokens:
	TRANSITIONDIAGRAM:
	Someimportantconventionsabouttransition diagramsare
	calleda Mooremachine.
	DESCRIPTIONOFAUTOMATA
	TypesofFiniteAutomata
	DETERMINISTICAUTOMATA
	Regularexpression→NFA→DFA→MinimizedDFA
	NONDETERMINISTICAUTOMATA
	DEFINITIONOF CFG
	DEFINITIONOFSYMBOLTABLE

	CreatingalexicalanalyzerwithLex
	declarations
	translationrules
	auxiliaryprocedures

